
Cover page
Inside cover with acknowledgment of partners and partner lo-
gos
1-page executive summary with highlights from statistics.
3 main sections – each of these will have all of the graphs from 
the list of 16 that pertain to each respective section:
Events
Victims
Fraudsters
The format for each of these sections will more or less like a 
prettier version of the ITAP Template document I sent you.  Ba-
sically each page will have 3+ graphs depending on design lay-
out (however many fit) and then 2 text sections copy for:
“Explanations”: A 1-2 sentence description of the graph
“Insights” a 1-paragraph exposition on what the statistic indi-
cates.

Privacy: a Machine Learning Perspective

Razieh Nokhbeh Zaeem 
K. Suzanne Barber

UTCID Report #20-05

MAY 2020



Economics of Privacy: Privacy, a Machine
Learning Perspective

Razieh Nokhbeh Zaeem∗ and K. Suzanne Barber

Synonyms

Machine Learning (Data Mining) for
Privacy Policy Summarization.

Definitions

Machine Learning for Privacy Policy
Summarization is the novel application
of machine learning techniques to auto-
matically extract summaries of online
privacy policies.

Background

Privacy policies have become the de
facto way of communicating how a
company or organization–and particu-
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larly its website–collects, shares, and
uses personally identifiable information
(PII). These privacy policies outline
how the organization handles, shares,
discloses, and uses PII of its consumers
or clients. PII is defined as “any in-
formation relating to an identified or
identifiable natural person”2 such as
name, email address, and credit card
number.

Meinert et al (2006) showed that
while most users know about privacy
policies, less than half of them have ever
read a privacy policy. Milne and Culnan
(2004) used self-reported data from
users and found that only 4.5% claim to
always read them. However, using the
more reliable server side observation of
websites, Kohavi (2001) revealed even
more astonishing statistics that only
1% or less of users click on a website’s
privacy policy. More recently, Steinfeld
(2016) used advanced eye tracking tech-

2 https://gdpr-info.eu
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niques to demonstrate that the same still
holds true today: users barely take effort
to read privacy policies thoroughly.

Ermakova et al (2014) attribute the
fact that most users do not read privacy
policies to the privacy policies’ poor
readability. Graber et al (2002) and
Milne et al (2006) show that the average
privacy policy requires two years of
college level education to comprehend.
In addition, Milne et al (2006) found
that privacy policies are getting longer
and harder to read, with the readability
score of the privacy policies decreasing
over time. In fact, according to McDon-
ald and Cranor (2008), reading privacy
policies is so time consuming that if
users were to read each new privacy
policy they encounter in a year, it would
take them over 200 hours.

To address the lack of readability
in privacy policies, researchers have
developed tools that leverage Machine
Learning (ML) and data mining to
automatically summarize conventional
privacy policies for the users. Among
these tools, however, very few are made
available to the public.

Application

Privee by Zimmeck and Bellovin (2014)
is the first automatic privacy policy anal-
ysis tool. Building on the crowd sourc-
ing privacy analysis framework ToS;DR
(2012), Privee combines crowd sourcing
with rule and machine learning classi-
fiers to classify privacy policies that are
not already rated in the crowd sourcing
repository.

The Usable Privacy Project by Sadeh
et al (2013) takes advantage of nat-
ural language processing, machine

learning, privacy preference modeling,
crowd sourcing, and formal methods
to semi-automatically annotate privacy
policies.

Two of the most recent publicly avail-
able tools to utilize machine learning for
privacy policy summarization are Poli-
sis3 by Harkous et al (2018) and Priva-
cyCheck4 by Zaeem et al (2018).

At its core, Polisis is a neural net-
work classifier trained on 130,000 pri-
vacy policies retrieved from the Google
Play store. Polisis segments a privacy
policy and automatically annotates each
segment with a set of labels, classify-
ing segments based on coarse- and fine-
grained classifications. Pribots by Hark-
ous et al (2016) is from the same authors
and is a chat bot that answers free-form
questions about privacy policies.

Powered by machine learning, Priva-
cyCheck by Nokhbeh Zaeem and Barber
(2020) is a publicly available browser
extension that automatically summa-
rizes any privacy policy by answering 20
questions based upon User Control and
the General Data Protection Regulation
(GDPR). Furthermore, PrivacyCheck
incorporates a competitor analysis tool
that highlights the top competitors with
the best privacy policies in the same
market sector. PrivacyCheck enhances
the users’ understanding of privacy
policies and empowers them to make
informed decisions when it comes to
selecting services with better privacy
policies.

Other researchers, too, have applied
machine learning and natural language
processing in privacy policy analy-

3 Available online at https://pribot.
org/polisis.
4 Available online at https:
//identity.utexas.edu/
privacycheck-for-google-chrome.

https://pribot.org/polisis
https://pribot.org/polisis
https://identity.utexas.edu/privacycheck-for-google-chrome
https://identity.utexas.edu/privacycheck-for-google-chrome
https://identity.utexas.edu/privacycheck-for-google-chrome
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sis Clarke et al (2012); Fawaz et al
(2019). PolicyLint by Andow et al
(2019) is a natural language processing
tool that identifies potential contradic-
tions that may arise inside the same
privacy policy. PolicyLint is tested on a
corpus of 11,430 privacy policies from
mobile apps. PrivacyGuide by Tesfay
et al (2018) is a machine learning
and natural language processing tool
inspired by the GDPR. It uses a corpus
of 45 policies from the most accessed
websites in Europe. PrivacyGuide,
however, is not publicly available, as
opposed to PrivacyCheck and Polisis.
Finally, studies of mobile app privacy
policies (e.g., MAPS by Zimmeck et al
(2019)) are on the rise.

Economics of Privacy

Acquisti et al (2016) reviewed the eco-
nomics of privacy and reported that, in
digital economies, consumers often re-
ceive imperfect, incorrect, or asymmet-
ric information regarding what data is
collected about them and how that data
will be used. Hence, consumers’ ability
to make informed decisions about their
privacy is severely hindered. Data min-
ing tools that summarize privacy policies
directly address this need and seek to im-
prove users’ understanding of what they
agree to in a privacy policy.

Open problems and Future
directions

A prominent future work is to gather a
more comprehensive training dataset, in
order to train more accurate supervised

machine learning models. Finally,
encouraging widespread use of such
tools by final consumers is an important
future direction that should be pursued.

Cross-References

1. Privacy-preserving data mining: Data
Mining (Privacy in)

2. Privacy metrics and data protec-
tion: Personally Identifiable Information

3. Privacy metrics and data protec-
tion: Privacy-Enhancing Technologies
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