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Abstract: Today, more than ever, everyday authentication processes involve combinations of Personally Identifiable In-
formation (PII) to verify a person’s identity. Meanwhile the number of identity thefts is increasing dramatically
compared to the past decades. As a response to this phenomenon, numerous privacy protection regulations,
and identity management frameworks and companies thrive luxuriantly.
In this paper, we leverage previous work in the Identity Ecosystem, a Bayesian network mathematical repre-
sentation of a person’s identity, to create a framework to evaluate identity protection systems. After reviewing
the Identity Ecosystem, we populate a dynamic version of it and propose a protection game for a person’s PII
given that the owner and the attacker both gain some level of control over the status of other PII within the
dynamic Identity Ecosystem. Next, We present a game concept on the Identity Ecosystem as a single round
game with complete information. We then formulate a stochastic shortest path game between the owner and
the attacker on the dynamic Identity Ecosystem. The attacker is trying to expose the target PII as soon as
possible while the owner is trying to protect the target PII from being exposed. We present a policy iteration
algorithm to solve the optimal policy for the game and discuss its convergence. Finally, an evaluation and
comparison of identity protection strategies is provided given that an optimal policy is used against different
protection policies. This study is aimed to understand the evolutionary process of identity theft and provide a
framework for evaluating different identity protection strategies and in future privacy protection system.

1 INTRODUCTION

In the year of 2018, General Data Protection Reg-
ulation(GDPR) had been enforced by the European
Union(EU) for regulation of data protection and pri-
vacy security for individuals. The discussion on pri-
vacy protection had once again become one of the
emerging topics in the society. Personally Identifiable
Information, known as PII, often refers to all the in-
formation in real world that relates to a person. Mul-
tiple chosen PII attributes are used in a group for au-
thentication or authorization. As the number of ways
that PII is used for authentication and authorization
increases, so does the number of thefts against iden-
tity. Identity theft can generally be defined as any
unauthorized use of a person’s identity. In the lat-
est government-published statistics [Harrell, 2017],
three general types of incidents of Identity theft are
included: unauthorized use or attempted use of an ex-
isting account, unauthorized use or attempted use of
personal information to open a new account, and mis-
use of personal information for a fraudulent purpose.

According to the document, identity theft had already
affected 16.7 million people in the U.S. in the year of
2017.

The study of identity theft [Berghel, 2012] with
the concept of PII, including protection/prevention
[Shah and Okeke, 2011], management [Yuan Cao
and Lin Yang, 2010] [Khattak et al., 2010], recov-
ery [Goode and Lacey, 2017], or risk of exposure [De-
laitre, 2006], had been raised to focus throughout the
past decade. Companies like Discover, LifeLock and
IdentityForce nowadays start providing identity pro-
tection services to both individual and business as
counter measures against identity theft incidents. It
is of our interest to develop a universal framework
to compare different identity protection policies with
the presence of malicious attackers. In this work, we
proposed an identity protection evaluation benchmark
that serve as an analytic tool to provide benchmark for
different identity protection policies.

From previous analysis of the Identity Threat As-
sessment and Prediction (ITAP) model [Lacey et al.,
2016], which was built from real world identity theft



data by the Center for Identity at the University of
Texas at Austin, the project established an evidence-
based understanding of how one personal identity
information(PII) attribute is used to access another.
This particular evolutionary process within owner’s
PII collective results in identity theft incidents that
directly causes identity owner’s loss of properties.
To formally establish understanding within a person’s
PII collective, previous work from Zaeem et al. [Za-
eem et al., 2016] has establish the Identity Ecosys-
tem, a Bayesian network representation of a person’s
identity, to study the identity theft as well as other
personal identity related issues. For instance, one
could analyze the security level to an authentication
method utilizing the power of the Identity Ecosys-
tem [Chang et al., 2018]. The Ecosystem features dif-
ferent relationships between PII attributes to answer
three main queries of the real world: The risk of ex-
posure of a certain PII, the cause of exposure, and the
cost/liability issue.

The Identity Ecosystem grants us the ability to
calculate the probability of exposure of PII given the
status of the Bayesian network. On the other hand,
stochastic games, introduced by Shapley [Shapley,
1953], have been studied for more than half a cen-
tury since the original paper. In the original paper, the
game was constructed with two players, some finite
set of game states and finite actions to both players as-
sociated with every state of the game. The transition
from a state of the game to another follows a distribu-
tion that is controlled by both players through their
actions played in the previous state. It also brings
in the concept of a ”terminal state” which the game
would transit into with some positive probability at
each state. The game is proved to be in equivalent
form to a infinite-horizon game with discounted cost.
Later on, many extensions and variants of the original
work have been developed and studied [Kumar and
Shiau, 1981].

In this paper, we apply our novel dynamic ap-
proach to the Identity Ecosystem to create an evalua-
tion platform for future privacy protection system. In
addition to that, as part of the evaluation framework,
we provided the stochastic game based approach with
the dynamic Identity Ecosystem to generate the min-
imax response to general attacker strategies. More-
over, the method is also used to provided survival
evaluation to existing privacy protection systems by
generating effective attack strategies against a per-
son’s identity. We provide a policy iteration algorithm
as well as a running example of the algorithm for the
minimax strategy. In Section 2, we cover related aca-
demic work. Then we formally explain the idea be-
hind our dynamic Identity Ecosystem and the gaming

setup for the stochastic game in Section 3. We pro-
vide the basic policy iteration algorithm setup for the
specific problem and the running example for the al-
gorithm in Section 4. The result from the algorithm is
also illustrated so that readers with minimal under-
standing of general Markov decision processes can
follow the paper without difficulty. Finally, conclu-
sions are given in Section 5.

2 RELATED WORK

In this section, we briefly review the several im-
portant concepts and background knowledge behind
the evaluation tool we are proposing in the paper. In
addition, it is worth mention that this work is an ex-
tension of previous work [Liau et al., 2019].

2.1 Bayesian Networks

In order to capture the inter-relationship within a per-
son’s PII collective, the Identity Ecosystem treats a
person’s identity as a Bayesian network. Previous
work Zaeem et al. [Zaeem et al., 2016] established an
example of such probabilistic graphical model with
real world security breach data. The work consider
each PII as a node in the Bayesian network—a ran-
dom variable with some distribution given the status
information from other related PII. The directed edges
in the Bayesian network model represents the casual
dependencies between random variables.

2.2 Game Theory in Network Security

Game theory has been widely used to study network
security and related topics [Roy et al., 2010] in the
past decades. Certain literature can be found [Roy
et al., 2010] that apply game theory in general. For
static game setup, [Carin et al., 2008] provides a good
example about how to apply basic game theory to in-
formation warfare. For dynamic games, [Manshaei
et al., 2013] surveyed several different concepts of
applying game theory to network security problems.
Game theory is often used to prove that a protocol is
optimized considering all the participants involved in
the system. In our work, we study the case where the
malicious users, having some partial control over the
network, are trying to acquire a specific PII attribute.

The problem of protecting PII that we tackle is
very similar to the problems like detection of credit
card fraud. In this type of problem, the owner of the
credit card is the one that actually has some partial
observation of the current status of PII. The owner
would like to detect the credit card fraud and take



Figure 1: A snapshot of the Identity Ecosystem. In this particular example, the size of the node is determined by the risk of
exposure and different colors are used to distinguish the types of PII. It also has the ability to filter and display only related
nodes and edges to a specific PII.

counter measures even before the credit card fraud in-
cident takes place. A concrete example can be found
in many articles like [Panigrahi et al., 2009] in which
a hybrid method to the detection of credit card fraud
was studied.

3 MATHEMATICAL
REPRESENTATION

In this section, we go through the mathematical
representation used throughout the paper including
the setup for a dynamic Identity Ecosystem. Then,
we provide a single round game example for demon-
stration of the idea behind our work. Finally, we in-
troduce the concept of treating identity protection as
a stochastic game.

3.1 Background: The Identity
Ecosystem

The original Identity Ecosystem in [Zaeem et al.,
2016] is a Bayesian model of PII attributes and their
relationships. Our version of the Identity Ecosystem,
as shown in Fig. 1, model is populated with real-
world data from approximately 6,000 reported iden-
tity theft and fraud cases. We leverage this populated
model to provide unique, research-based insights into
the variety of PII, their properties, and how they in-
teract. Informed by the real-world data, it enables the
investigation of the ecosystem of identifiable informa-
tion in which criminals compromise PII and misuse
them.

As an example query, the identity ecosystem im-
plementation is used to predict future risk and losses

of losing a given set of PII and the liability associ-
ated with its fraudulent use. In the Bayesian model,
each PII (e.g., Social Security Number) is modeled
as a graph node. Probabilistic relationships between
these attributes are modeled as graph edges. We lever-
age this Bayesian Belief Network with Gibb’s Sam-
pling to approximate the posterior probabilities of the
model, assuming the given set of PII attributes is com-
promised. In addition, once more information about
the victim or the incident is available, the Ecosystem
is able to refine the predicted risk and value to re-
flect the new information and converge to the risk and
value in the real world. Note that in general discus-
sion, the number for PII attributes that a person could
have is a finite number.

Utilizing a probabilistic graphical model to repre-
sent the instances of these complicated relationships
fits the purpose of understanding different aspects of
a person’s identity. The effect of PII exposure, for ex-
ample, is different depending on the status of other
PII of a person. For instance, the exposure or theft
of a person’s Social Security Number (SSN) could re-
sult in credit card fraud, identity fraud in mobile de-
vices or even unauthorized access to a person’s bank
accounts. The count on PII attributes that are at risk
of exposure if a person’s SSN is leaked may also be
different depending on the status of other PII. When
the SSN is leaked due to some incident, the impact on
personal identity for persons who share their birthday
publicly are more severe than those who do not.

3.2 PII Dynamics within Identity
Ecosystem

We establish our system dynamic over the Ecosystem
to construct our identity protection system evaluation



tool. Suppose there is an attacker who has some abil-
ity to expose/acquire some of the unexposed PII as
he/she wishes. The random variable turns from 0 to
1 when a person’s PII is exposed by the attacker. PII
can also become exposed accidentally rather then be-
ing intentionally breached by the attacker. On the
other hand, the owner of the PII can also actively
make some of the exposed PII unexposed if it is al-
lowed to do so (e.g., changing a phone number). The
random variable then turns from 1 to 0 when the
owner takes action to protect the PII. Now we for-
mally define the state of the network as a N×1 vector
SV := [V1,V2, · · · ,VN ].

Figure 2: Node Model of PII. The status of the PII can
change due to owner protective action (e.g. changing pass-
port) or attacker exposure (e.g. phishing). Another case is
by exposure by accident (e.g. subscription).

This setup forms a basic game if we associate a
proper cost function to it. Consider two players, one
is the owner, who tries to minimize the probability
of a certain PII being exposed while the other is the
attacker, who tries to maximize the probability of a
certain PII being exposed. Without the lose of gen-
erality, we consider the basic case where each player
can only choose one PII to change.

3.3 Single Round Game with Complete
Information

To illustrate our idea of the basic game setup, let us
consider a similar but different example where as-
suming the game will be played only once. In this
scenario, we consider a single round, complete in-
formation setup, meaning that both the attacker (de-
noted as malicious playerM) and the owner (denoted
as player U) have the same amount of knowledge as
the other one. Let SU and SM be the collections of PII
that the owner and the attacker can change, respec-
tively. Moreover, the value of each random variable
in SU has to be 1 while the value of each random vari-
able in SM has to be 0. VD is the target PII which
the owner wants to protect while the attacker wishes
to expose. Suppose there is a strictly positive cost
function f : V1 ×V2 × ·· · ×VN → R when someone
wants to change the value of the node from 0 to 1
and also another strictly positive bounded cost func-
tion g : V1×V2× ·· ·×VN → R if someone wants to
change the value of the node from 1 to 0.

Recall that in the original Identity Ecosystem, a

total of N PII attributes are deployed on the graph to
form a Bayesian Network. Link ei j in the Bayesian
network is directional, representing a direct influence
of Vi to Vj. A graph G is defined as a collection of
nodes and directional links. Define also a path from
Vi to Vj as a sequence of nodes and directed links that
starts at i and ends at j following the orientation of the
graph, i.e.,

(Vi→Vj) = {Vi,(Vi,Vk),Vk, · · · ,(Vm,Vj),Vj}

where k,m ∈ [0,N]. An action of player i on iden-
tity j is defined as Ai

j meaning that player i is trying
to change the value of Vj. There exists two sets SU
and SM denoting the set of PII that the owner and the
attacker can change. The following is common prop-
erties of the sets

1. SU ∩SM = /0

2. ∀Vj ∈ SU , Vj = 1

3. ∀Vj ∈ SM, Vj = 0

4. VD /∈ SM

5. A action Ai
j is valid if and only if Vj ∈ Si

Now recall the function PD : V1 ×V2 × ·· ·Vj · · · ×
VN → [0,1],Vj ∈ V \VD from our ecosystem which
gives us the probability that VD is exposed under the
state SV . Denote the value of PII as V

′
j after an action

had been taken by both of the players, then the utility
function of player i with action Ai

j in the single round
game is given as

{
rU (AU

j ,A
−U ) = PD(V1, · · · ,VN)−PD(V

′
1, · · · ,V

′
N)

rM(AM
j ,A

−M) = PD(V
′
1, · · · ,V

′
N)−PD(V1, · · · ,VN)

where A−i is the action taken by another player in the
game.

Next we provide a basic example of the single
round game calculation. Consider a smaller instance

Figure 3: Basic Example for a single round game with com-
plete information. The color indicates whether the specific
PII is exposed (grey) or not. The increase or decrease in
exposure probability is calculated with the action players
choose and the Bayesian inference from the graph.

of the ecosystem in Figure 3. In the example, white



vertices are the PII attributes that are unexposed and
the grey ones are exposed. Now we can give the game
with the following strategic form in Table 1. In this
example, the probability of VD being exposed is 0.5
for the initial setup SV = [0,0,1,1,0]. For instance, to
calculate the difference in probability for action pair
(A4

U ,A
1
M), we uses Bayesian inference to calculate

the probability of exposure for state S
′
V = [1,0,1,0,0]

which is 0.4. The calculation of the example should

Table 1: The strategic form of the basic example in Fig 3.

None AM
1 AM

2 AM
5

None (0,0) (−0.41,0.41) (−0.42,0.42) (0,0)
AU

3 (0.15,−0.15) (−0.4,0.4) (0.25,−0.25) (0.1,−0.1)
AU

4 (0.25,−0.25) (0.1,−0.1) (−0.3,0.3) (0.2,−0.2)

give us one unique mixed strategy Nash equilibrium
with player M playing AM

1 with probability 8/21 and
AM

2 with 13/21 while AM
5 strictly dominated by the two

strategy. Player U should be playing AU
3 for 11/21 and

AU
4 for 10/21.

Note that in this case, since both of the parties are
only considering the probability difference of the ac-
tions, it is a zero sum game in any case under the
setup.

3.4 Stochastic Game

Given the discussion in the previous section, we now
present the proposed dynamic Identity Ecosystem as
follows. The whole dynamic Ecosystem can be con-
sidered as a stochastic game, which conducted with
many rounds of modified single round version in the
previous section. In this the dynamic Ecosystem, each
round consists of three phases: decision, exposure and
resolve. In the decision phase, we play the game as a
single round game where the owner and the attacker
each choose certain PII to protect and expose. How-
ever, the payoff function here is replaced with a con-
stant for both attacker and owner for every round they
played, which we shall explain after setting up the rest
of the game. In the exposure phase, each unexposed
PII attributes in the network Vj is going to be exposed
with a probability given by a strictly positive function
Pj : V1×V2×·· ·Vk · · ·×VN → (0,1],Vk ∈ V \Vj rep-
resenting accidental exposure. We setup this phase
to capture the real world phenomenon that personal
PII often get exposed unintentionally by neither the
owner nor the attacker. In the last phase, all PII in
the Bayesian network are updated with the new sta-
tus simultaneously and if the target PII is exposed,
the game ends in that round. Otherwise the game
continues until the target PII (e.g., password, credit
card information) is exposed. Different from the sin-

Figure 4: Partial Network of the identity Ecosystem. Note
that in this example, the attacker cannot directly expose PII
V4 before PII V3 is exposed. The figure also illustrates the
initial status of the PII in our example.

gle round game, the utility of the owner is now to pro-
long the game while attacker is trying to end the game
as fast as possible. Note that since the objective for
both player now is directly connected to the number
of rounds that the games is being played, it is conve-
nient for our discussion to setup the payoff function
as a constant that both player would receive at each
round.

4 Algorithm Result

Here we utilize the result from Patek and Bert-
sekas [Patek and Bertsekas, 1999]. From our setting
for the game and above lemmas, assumption SSP and
assumption R is satisfied thus suggests that there is a
unique fix point for the game and the convergence of
policy iteration to the fixed point.

Since the system is constructed on real world iden-
tity stories, it suggests that the game always ends with
the target PII being exposed which is a direct result
from the PII exposure probability function Pj which
we stated as a strictly positive function if we look
at our setup of the game. The interpretation of this
corollary is consistent with the construction of the
Identity Ecosystem. The Identity Ecosystem is con-
structed from two main sources, one from manually
listing PII relationships and the other from the Iden-
tity Threat Assessment and Prediction (ITAP) project
at the Center for Identity at the University of Texas at
Austin. All of the PII being studied from these two
data sources are guaranteed to have some level of ex-
posure since the ITAP project generates the Identity
Ecosystem data from fraud cases that took place in the
real world. Thus we take the assumption that PII ex-
posure probability function Pj is strictly positive. De-
fine the action chosen by attacker and owner in state
i as ui and vi respectively. Then we define the policy
as the set of actions that specify the player action in



Algorithm 1 Policy Iteration
State SetX :=V1×V2×·· ·×VN
State x,y ∈ X
Actions AU (x) = {Vi, . . . ,V j},AU (x) : X ⇒ AU (x)
Actions AM(x) = {Vl , . . . ,Vk},AM(x) : X ⇒ AM(x)
Policy ν(x) : X ⇒

⋃
x∈X AU (x)

Policy µ(x) : X ⇒
⋃

x∈X AM(x)
Cost function g : X ×AU (x)⇒ R+

Transition probability pxy(AU
i ,A

M
l ) = P(y|x,AU

i ,A
M
l )

1: procedure POLICY ITERATION(X , AU , AM , g)
2: Initialize J,J′ : X → R+

0 arbitrarily
3: while J is not converged do
4: for x ∈ X do
5: J(x,ν(x),µ(x)) ←

∑y∈X pxy(ν(x),µ(x))[J(y)+g(y,ν(x),µ(x))]
6: end for
7: end whilereturn J
8: Improve Policy Set (ν(x),µ(x))
9: for x ∈ X do

10: ν(x)′,µ(x)′ ←
min
µ(x)

max
ν(x)

[E(g(x,ν(x),µ(x)))+ J(x,ν(x),µ(x))]

11: end for
12: ν(x),µ(x) ← ν′(x),µ′(x)
13: if Policy Set ν(x),µ(x)stable then return

(ν(x),µ(x))
14: else return to line 3
15: end if
16: end procedure

every single stage and state the game is being played.

4.1 Policy Iteration Algorithm

Consider a partial Identity Ecosystem which we run
our algorithm on as in Figure 4. The network struc-
ture is referenced from the original Identity Ecosys-
tem but modified and trimmed to better demonstrate
how a miniaturized system work. There are 11 nodes
including the target PII, 6 controllable PII and 4 evi-
dent PII. Note that in this case, we have information
about the evident PII which either they are exposed or
not in the initial condition. In our experience, when
we try to estimate the exposure risk on a person’s
Identity system, we can actually gather information
about the status of some portion of the PII. The ev-
ident PIIs {E1,E2,E3,E4} represent the PII that we
have the status information. We then assign an initial
action to play for the owner along with assigning an
initial value to all of the states. We choose the cost
function for both the attacker and the owner to be a
constant function 1 to simulate the situation in which
both the attacker and the owner shall try they best to
end or prolong the game without the consideration of
costs. Then the attacker calculates its best strategy
in the sense of minimizing the payoff of owner. Af-

ter that the ecosystem runs for one step to determine
the accidental exposure of PII for each of the states.
Combining the action choice of the attacker, the ac-
tion choice of the owner and the result from accidental
exposure, the Identity Ecosystem generates the transi-
tion distribution to all the other states connected under
AU and AM . The expected cost value is then calcu-
lated accordingly before the algorithm enters another
iteration.

Note that the algorithm is a greedy algorithm in
which the convergence to the unique fixed point is
guaranteed while the complexity is high. For each
step the algorithm runs, it evaluates the current poli-
cies with respect to all the states that the Identity
Ecosystem has. While properties of different PII pre-
vent the system from visiting all the possible states,
there are still O(2N) states in general for each evalua-
tion. Within the scope of this paper methods like gen-
eral Stationary Iterative Method (SIM) [Bertsekas and
Tsitsiklis, 1996] or Krylov Subspace Method [Senda
et al., 2014] can be applied to the problem to improve
the performance of the algorithm.

As our example in Fig. 4, eleven PII attributes
are presented including the target PII. We use a uni-
form cost setup for all the actions that are available
to both the attacker and owner, which means that the
attacker and owner have no concern about the cost of
achieving their goal while trying their best to expose
or defend the target PII.

Nodes V1 · · ·V6 are representing different PII that
the owner has. We use another practical setup here to
demonstrate the flexibility of the Identity Ecosystem
and the algorithm: for PII V3 and PII V4, the attacker
cannot directly expose V4 if V3 was not exposed pre-
viously either accidentally or by the attacker.

Table 2: Strategy profile for Identity Ecosystem

V1 V2 V3 V4 V5 V6

status unexposed exposed unexposed unexposed exposed exposed
Defend — 0 — — 1 0
Attack 0 — 1 0 — —

For example, at the initial state, the best strategy
for the owner is to unexpose V5 with probability 1
while for the attacker the best strategy is to expose
V3 with probability 1.

The game then enters the next state where the tran-
sition is the result of combining actions of the owner
and the attacker as well as accidental exposure. When
the algorithm converges to its optimal, for every state
such strategy profile is provided. The strategy profile
in this example is deterministic because of the setup
of the exposure probability function. The direct re-
sult from our setup is that there exist strong dominant
strategies in most of the states. If non-linearity was



Table 3: Strategy profile for Identity Ecosystem for another
state

V1 V2 V3 V4 V5 V6

status unexposed exposed exposed exposed exposed unexposed
Defend — 0 0 1 0 —
Attack 0 — — — — 1

included in the setup, a general probability distribu-
tion among the actions is expected.

4.2 The Evaluation Framework

What can these strategy profiles tell us? The strategy
profile from the algorithm result is the minimax so-
lution to the stochastic game problem. The solution
solves the Bellman equation which it does not solve
for the best strategy against some specific predefined
attack strategies. It is actually a conservative solution
that tries to maximize the individual payoff among all
of the possible strategies that the opponent might play.
We utilize this property to generate a minimax strat-
egy profile for both the PII owner and the malicious
attacker. While the game is being played, the payoff
that both player receive is the same in absolute value,
which directly create the incentive for the thief to end
the game as soon as possible. This generate a mini-
max strategy profile that incline with that goal.

On the other hand, given that we have the strat-
egy profile from the algorithm, we can interpret ex-
isting privacy protection policies to the system as
the owner’s strategy to complete against the minimax
strategy attacker strategy we have. Based on the num-
ber of rounds that the target PII or owner had survive,
it is possible to benchmark different identity protec-
tion strategies in a numeric way.

Take the partial dynamic Identity Ecosystem in
Fig. 4 as an running example, nowadays credit card
companies like Discover monitor several crucial PII
like Social Security Number in the internet to deter-
mine whether the PII is exposed or not instead of ac-
tively providing instructions to protect person iden-
tity. This type of identity management framework
was mentioned in [Mashima and Ahamad, 2008]. We
can translate this type of strategies as ”passive” strate-
gies into the dynamic Identity Ecosystem. This type
of strategies hand-pick PII from past experience and
monitor the status of them. For instance, if we create
a strategy with similar idea and run the partial system
with owner strategy as:

1. Create a watchlist consist of V5 and V6.

2. Monitor any of the PII within the watchlist, if any
of them get exposed, try to unexposed them as
soon as possible.

3. If multiple PII within the list is exposed, randomly
choose one of them to unexpose at that round.

Then run the system against the minimax strategy. As
the experiment result, we compare the ”passive moni-
tor” strategy against randomly selection and minimax
strategy. The result is shown in table 4. We run the
system 50 times for the sample mean of how many
rounds specific strategy survive.

Table 4: Rounds of Survival(Mean) for different Owner
Strategies

Passive Monitor Random Selection Minimax Strategy
number of rounds 5.32 8.72 9.34

We can see from the result that the passive monitor
strategy does not perform well in the evaluation. One
of the reason is that it only monitor 2 PII attributes
out of the 10 within our system. In the ITAP data
we have, the Ecosystem utilize 627 PII attributes to
define a person’s Identity status. In our survey pro-
cess, most of the protection system does not monitor
PII in this scale, as the passive monitor strategy in our
experiment. The random selection performs close to
the minimax strategy since the system we have is a
miniaturized Identity Ecosystem and the probability
of exposure assigned to the example does not fluctu-
ate much among the actions that the attacker can take
in many of the rounds.

5 CONCLUSION

Revisiting the idea of studying personal identity in
the Identity Ecosystem, we introduced our dynamic
mechanism for capturing the evolutionary process of
identity theft. We also applied game theory to un-
derstand the strategies to effectively protect/attack the
system. In addition, we presented a complete algo-
rithm by treating the interaction between the owner of
identity and the attacker as a stochastic shortest path
game and applied it to a partial Identity Ecosystem
to demonstrate how strategy profiles work. Finally,
we interpreted one of the common identity protection
mechanisms from the real world and utilized our gen-
erated strategy profile against it. We also provided
a new methodology for comparison among different
identity protection strategies.

In future work, we wish to evaluate our framework
on a full-size Identity Ecosystem. Furthermore, it is
particularly an interesting topic to evaluate and com-
pare more existing identity protection strategies with
the system we present. Meanwhile, the time complex-
ity of the proposed algorithm can be optimized for
certain network topology once more mature results



about the dynamic Identity Ecosystem are studied. Fi-
nally, we hope that results from this paper can provide
some insight about applicable strategies of protecting
the integrity of one’s personal identity.
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